
Accepted for publication in J.Fluid Mech.

Evolution and breaking of parametrically forced
capillary waves in a circular cylinder

By B A B U R A J A. P U T H E N V E E T T I L 1

AND E. J. H O P F I N G E R 2

1Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.
2LEGI-CNRS, Grenoble, France.

emil.hopfinger@hmg.inpg.fr

(Received July 2008 and in revised form December 2008)

We present results on parametrically forced capillary waves in a circular cylinder, ob-
tained in the limit of large fluid depth, using two low viscosity liquids whose surface
tensions with air differ by an order of magnitude. The evolution of the wave patterns
from the instability to the wave-breaking threshold is investigated in a forcing frequency
range ( f = ω/2π = 25 to 100 Hz) that is around the cross-over frequency (ωot) from grav-
ity to capillary waves ( ωot/2 6 ω/2 6 7ωot). As expected, near the instability threshold
the wave pattern depends on the container geometry, but as the forcing amplitude is
increased the wave pattern becomes random and the wall effects are insignificant. Near
breaking, the distribution of random wave lengths can be fitted by a Gaussian with the
most probable value being close to that obtained from the linear dispersion relation.
A new gravity-capillary scaling is introduced that is more appropriate than the usual
viscous scaling for low viscosity fluids and forcing frequencies < 103 Hz. In terms of
these scales, a criterion is derived to predict the cross-over from capillary to gravity dom-
inated breaking. A wave-breaking model is developed that gives the relation between
the container and the wave accelerations in agreement with experiments. The measured
drop size distribution of the ejected drops above the breaking threshold is well approx-
imated by a Gamma distribution. The most likely drop diameter is proportional to the
wavelength determined from the dispersion relation; this wavelength is also close to
the most likely wavelength of the random waves at drop ejection. The dimensionless
drop ejection rate is shown to have a cubic power law dependence on the dimensionless
excess acceleration ǫ′

d
; an inertial-gravitational ligament formation model is consistent

with such a power law.

1. Introduction

Wave motions at liquid-gas interfaces, especially wave breaking and drop ejection,
can substantially increase the interfacial heat and mass transfer. An example is the mass
transfer across the air-sea interface where gravity and capillary waves play an essential
role. Saylor & Handler (1997) showed that capillary waves can increase the transfer rate
of CO2 by two orders of magnitude compared with the diffusive flux at an undisturbed
interface. Another application is in liquid fuel tanks that are often subjected to vibrations
in the frequency ranges corresponding either to gravity or capillary waves; the fuels are
usually of low viscosity and have low surface tension with air. When the tanks are
exposed to external heat fluxes, the waves at the liquid-gas interface can be the cause of
large pressure changes due to enhanced evaporation or condensation(Das & Hopfinger
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2008a). In the kHz and MHz ranges, the production of sprays by vibrations has been
used rather extensively but the mechanisms of droplet formation are rather complex
and not well understood (Yule & Al-Suleimani 2000). There are thus fundamental as
well as practical interests for studying interfacial waves, including wave breaking and
droplet ejection, in the capillary-gravity frequency range ( driving frequency < 1kHz),
especially in low viscosity fluids with low surface tension with air.

Well controlled waves in a container can be produced by forcing the container in the
direction normal to the liquid surface. Such waves, known as Faraday waves, that are
sub-harmonically excited (wave frequency equal to half the driving frequency ) have
been extensively studied in both the gravity and the capillary limits (Benjamin & Ursell
1954; Miles & Henderson 1990; Kumar & Tuckerman 1994; Edwards & Fauve 1995;
Kudrolli & Gollub 1996). In such waves, the cross-over from gravity to capillary waves
corresponds to the equality of the gravity and the capillary terms in the dispersion
relation,

ω2
o =

(

gk +
σ

ρ
k3

)

tanh(kh), (1.1)

were, g is the gravitational acceleration, k the wave number, σ/ρ the kinematic surface
tension, h the fluid depth and ωo the circular wave frequency. The fluid depth can be
considered infinite when tanh(kh) ≅ 1. The cross-over wave frequency from gravity to
capillary waves according to (1.1) is given by:

ωot = (4g3ρ/σ)1/4. (1.2)

The driving threshold acceleration for parametric instability in the capillary, un-
bounded and infinite fluid depth limits, is (Edwards & Fauve 1995; Kumar & Tuckerman
1994)

ac = 8(ρ/σ)1/3νω5/3, (1.3)

where the circular driving frequency ω = 2ωo and ν is the kinematic viscosity.
Experiments on Faraday waves are usually conducted in finite size containers that

makes the wave pattern in low viscosity fluids dependent on the container geome-
try (Gollub & Meyer 1983). Side wall boundary effects are felt to a decay length

ld ∼ σ/(4νρω) (1.4)

so that the container side boundaries can be disregarded only when R ≫ ld where, R is the
radius of the container; the system is then considered as a ‘large system’ (Bechhoefer et al.
1995; Edwards & Fauve 1995). By analogy with Rayleigh-Bénard convection, the aspect
ratio ζ = R/h is sometimes used to distinguish between large and small devices(Kudrolli
& Gollub 1996). While a large aspect ratio may imply that R/ld is also large, R/h is not
the relevant parameter for characterising lateral boundary effects in the case of Faraday
waves. For instance, in applications where the container radius is very large, R/h is of
order 1 whereas R/ld >> 1.

Beyond the stability limit, the pattern evolution of Faraday waves is complex. Theo-
ries that propose three-wave resonant interactions(Zhang & Vinals 1997; Chen & Vinals
1997) in the capillary limit for unbounded fluid layers have been successful in match-
ing experiments in large systems (Binks et al. 1997; Kudrolli & Gollub 1996) near the
instability threshold. No general theory exists for pattern evolution in small systems
where side boundary effects are important. Ciliberto & Gollub (1985) propose that in
small systems the evolution of wave numbers is due to mode competition. For water at
a forcing frequency f = 16Hz in a container of radius R = 6.35 cm, these authors showed
that this competition can give rise to oscillations at ω/2, a single stable mode, a slow
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periodic variation, or a chaotic variation of amplitudes. Gollub & Meyer (1983) observed
that in a container of R = 2.41 cm, filled with water and forced at f = 62Hz, the wave
motions become chaotic at ǫ = (a− ac)/ac of about 1, where, a is the driving acceleration.
All these studies were limited to ǫ < 1.37, well below wave breaking conditions.

At large amplitudes of vibrations, waves break ejecting drops; far less is known about
such large amplitude waves and wave breaking conditions. Jiang, Perlin & Schultz
(1998) and Jiang, Ting, Perlin & Schultz (1996) demonstrated the breaking scenario of
parametrically forced two-dimensional gravity waves. Goodridge, Shi & Lathrop (1996);
Goodridge, Tao Shi, Hentschel & Lathrop (1997) and Goodridge, Hentschel & Lathrop
(1999) determined the drop ejection threshold acceleration for capillary waves in water
and glycerin-water mixtures up to driving frequencies of 100 Hz, but did not investigate
the wave pattern at large ǫ. The critical driving acceleration for the onset of drop ejection
given by Goodridge et al. (1996, 1997, 1999) is

ad ≈ 0.26(σ/ρ)1/3ω4/3, (1.5)

which is independent of viscosity in the frequency range of the experiments. Goodridge
et al. (1997, 1999) introduced capillary-viscous scales in the form

Ων =

(

σ/ρ
)2

ν3
(1.6)

for the frequency,

Lν =
ν2

σ/ρ
. (1.7)

for the length and aν = LνΩ
2
ν for the acceleration. In dimensionless form, (1.5) is then

written as a∗ν ≈ 0.26 (ω∗ν)
4/3 where

a∗ν = a/aν and (1.8)

ω∗ν = ω/Ων. (1.9)

From measurements of the droplet ejection acceleration threshold, Goodridge et al. (1997)
concluded that capillary wave breaking is independent of viscosity if ω∗ν 6 10−5. This
has been confirmed by James, Vukasinovic, Smith & Glezer (2003b) and James, Smith &
Glezer (2003a) who conducted experiments on parametric instability of large drops at
driving frequencies of about 1000 Hz. From measurements of the ejected drop sizes in
the frequency range 1.52 to 2.42 MHz, Donnelly, Hogan, Mugler, Schommer & Schub-
mehl (2004) concluded that viscous effects on the drop diameter are insignificant up to
ω∗ν ∼ O(0.1). Similar conclusions were formed from the study of drop size distribution
due to vibration induced atomisation at around 1kHz by Vukasinovic et al. (2004). Since
viscosity effects are insignificant in low viscosity fluids, at least at driving frequencies
< 1 kHz, a more appropriate scaling is a gravity -capillary scaling, as will be shown in
Section 4.1.

For a > ad, Goodridge et al. (1999) determined the drop ejection rate

Φ = N/(STωo) (1.10)

and proposed the power law

Φ = 0.039ǫ2.8
d , (1.11)

where, N is the number of drops ejected during time T from a projected surface area S of
the fluid surface and ǫd = (a− ad)/ad. The above expression is based only on experiments
with one liquid at one driving frequency. It is likely to be incomplete as it equates a
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dimensional quantity Φ, which has the dimension of number of drops per unit surface
area, to a dimensionless parameter ǫd. Further, the drop size distribution of the ejected
drops has been measured only in sprays formed by vibrations in the kHz and MHz
ranges (Lang 1962; Topp 1973; Donnelly et al. 2004; Vukasinovic et al. 2004). Whether
these results obtained in the MHz range, where viscous effects are important in the
breaking process, are similar to the drop sizes and their distribution at frequencies of
the order of 102 Hz is still not known.

In the present paper, we present experimental results of the nonlinear evolution and
wave breaking of sub-harmonically excited Faraday waves for frequencies ωot/2 6 ω 6
7ωot using low viscosity fluids of kinematic surface tensions that differ by an order
of magnitude. Because of the low viscosity, the decay length is of the order of the
container radius. Therefore, the system is a ‘small system’ with the wave patterns near
the instability onset depending on the container geometry. Here, we show how this
pattern evolves from small ǫ to large ǫ where the wave motion becomes random and
independent of the container geometry; boundary effects are in this case confined to the
Stokes layer thickness. The wavelengths at drop ejection are the same as the inviscid
dispersion wavelength.

Concerning the drop ejection, the interest of the present results with respect to those
of Goodridge et al. (1997), is the use of two liquids of widely different surface tensions
to validate the proposed models. We used water ( σ = 72 dyne/cm, ωot = 85 rad s1) and
FC-72 (σ = 10 dyne/cm, ωot = 158 rad s−1); a glycerin-water solution was also used to
verify the decay length ld. In addition, we introduce a simple but important, new gravity-
capillary scaling that is more appropriate for low viscosity liquids in the frequency range
where viscous effects are insignificant. This scaling gives the transition from capillary to
gravity dominated breaking; the dimensionless values of the threshold accelerations are
of order 1 instead of order 10−5 when using the viscous scales. Furthermore, a simple
break-up model is developed that demonstrates the essential physics of drop ejection.
Using this model, a relation between the wave and the container acceleration is ob-
tained; an information that is of interest for interfacial heat and mass transfer models.
The measurements of the drop size distribution are the first in the present frequency
range. In applications, wall vibrations can be the cause for capillary waves and possible
drop ejection. Hence, in Appendix A, the drop ejection conditions for horizontally forced
capillary waves (horizontal vibrations) are briefly discussed. The results obtained with
horizontal forcing confirm the capillary drop ejection model developed. The drop ejec-
tion rate has been measured for the two fluids and a model is proposed that collapses
the data reasonably well.

The paper is organised as follows. In Section 2 the experimental conditions and the
procedures are presented. The observed wave pattern evolution is discussed in Section 3.
Section 4 contains the results on drop ejection, giving the acceleration threshold in terms
of the new gravity-capillary scaling, followed by the break-up model and the relation
between the container and the wave acceleration. The drop size measurements are
presented in Section 4.4. The drop ejection rate is discussed in Section 4.5 and the main
conclusions given in Section 5. In Appendix A, the drop ejection threshold is given for
horizontal forcing.

2. Experimental conditions

The experimental setup used is a transparent circular cylinder of radius R = 2.5 cm
and 3 cm depth, filled with the fluid and mounted on a Bruel & Kjaer 4809 vibration
exciter(figure 1). The vibration exciter was driven by a signal generator through a Bruel&
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Figure 1. The experimental setup.

Kjaer 2709 amplifier. The container acceleration is given by a(t) = Aω2sin(ωt), where A is
the shaker amplitude. The signal generator and the amplifier were electrically isolated
so as to output a clean sinusoidal signal into the vibration exciter. To reduce unwanted
vibrations, the vibration exciter was bolted to a 100kg steel block that was placed on a
vibration damper sheet.

Water and FC-72 were used in the study. Sufficient care was taken to avoid contam-
inants in the fluids. We used de-ionised water, fresh samples of which, taken from air
tight storages were used for each experiment. FC-72 was also taken from sealed contain-
ers and handled carefully to avoid contamination. FC-72(3M 2000) is a clear colourless
liquid with low surface tension with air and is fully wetting. The relevant properties of
FC-72 are shown in Table 1. FC-72, due to its low surface tension with air, is not prone
to contamination as much as water. In all the cases, the test section was first rinsed with
fresh samples before filling the test fluid. The experiments were of short duration and
the samples were not left exposed to atmosphere for long periods. Since tanh(kh) = 1 for
these fluids for the present setup, we approximate the system to be of infinite depth. A
few experiments to determine the effects of viscosity on the wave patterns and the drop
ejection criterion were also conducted with glycerin-water solution.

To reduce the meniscus waves, brimful conditions were maintained for water and the
glycerin-water solutions. The container was filled to a level where no deflection in the
reflected light beam from the liquid surface was observed at the container edge. For FC-
72, brimful conditions could not be maintained as the liquid is volatile and fully wetting.
We did not study the effect of volatility on the interface motion in the case of FC-72. Since
the liquid and surrounding air temperatures were the same, evaporation occurs until the
equilibrium partial vapour pressure is reached above the liquid surface. Evaporation is
rapid at the start (during about 10 sec) but then is slow and has a negligible effect on the
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ρ,
(g cm−3)

ν,
(cm2s−1)

σ,
(dyne cm−1)

ac, (g) λ,(cm) ld, (cm) ωot/2π(Hz)

FC-72 1.680 0.0038 10 0.0761 0.49 2.56 25.3
Water 0.997 0.0089 72.8 0.26 0.99 6.43 13.5
Glycerin-water soln. 1.26 1.44 63 46.46 0.9 0.028 14.8

Table 1. Properties of the fluids used at 20oC from Batchelor (1969) for water and from 3M
(2000) for FC-72. ρ = density, ν = kinematic viscosity, σ = surface tension with air, ac = critical
acceleration for Faraday instability calculated from (1.3), λ =wavelength from dispersion relation
(1.1) for infinite depth, ld = viscous decay length calculated from (1.4). ac, λ and ld are calculated
for f = ω/2π = 50Hz. The wavelength for the glycerin-water solution has been calculated from

the viscous dispersion relation λν = 3π
√
ν/ωo given by Donnelly et al. (2004).

interfacial motion when the forcing amplitude was small. At larger forcing amplitudes
when drop ejection occurred, there was generally about 1mm loss of liquid.

The wave patterns were captured using reflected diffused light from the liquid surface
by an overhead digital camera (JAI) with a macro lens. The light source was kept at an
angle of about 10o with respect to the vertical at about 1m above the liquid surface. The
camera was also placed at the same angle and height as the light source, as shown in
figure 1. This arrangement was found to give the best pictures of the surface waves.
The camera was triggered with an external trigger; the wave patterns were frozen
by adjusting the trigger frequency. The wave frequency was obtained by viewing the
wave patterns at the subharmonic frequency and then at the harmonic frequency. The
images froze when the trigger frequency was half the driving frequency. When viewed
at harmonic trigger frequency, the subharmonic waves showed alternating crests and
troughs at the same position. To study wave heights, drop diameters and drop ejection
rates, side view images were taken after aligning the light source, test section and the
camera in a horizontal line, with the camera center at the height of the liquid surface.

The vibration exciter was calibrated to determine the acceleration for a given amplifier
voltage. During calibration, in order to have the same weight as in the experiments, the
container was filled with the experimental fluid and sealed with tape. The displacement
for different amplifier voltages at three driving frequencies of 25 Hz, 50 Hz and 100 Hz
were measured using an optical displacement probe pointed at the top solid surface of the
container. Calibration plots of r.m.s input voltages to the amplifier vs the corresponding
maximum acceleration of the container were prepared for the three frequencies for the
three fluids and used in the calculations.

3. Pattern evolution

Figure 2(a) and 2(b) show the observed wave patterns when a < ac, where ac is
calculated from (1.3), at a driving frequency of f = ω/2π = 50Hz for FC-72 and glycerin-
water solution. The pattern at f = 100 Hz for water when a < ac is shown in figure 2(c).
The waves in figure 2(a) and 2(c) are synchronous meniscus waves. The decay length
for the conditions in figure 2(a) and 2(c) is of the order of R ( see Table 1). Hence,
meniscus waves, which are synchronous with the forcing, are seen over the whole
surface. In the case of water, the container was filled to its upper edge. In spite of
this, meniscus waves are generated. Meniscus waves exist for FC-72 even though the
kinematic surface tension is very small. As is clear from figure 2(b), no meniscus waves
are observed for glycerin-water mixture because the decay length is much smaller than
R. The wavelengths calculated from (1.1) are given in Table 1. In the case of low viscosity
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(a) (b) (c)

Figure 2. Wave patterns at accelerations a less than the critical acceleration ac (1.3) for forcing
frequency f = 50 Hz. (a), for FC-72 at ǫ = (a − ac)/ac = −0.76 ; (b), for glycerin -water solution at
ǫ = −0.87 and (c),wave patterns for f = 100 Hz at ǫ = −0.25 for water.

(a) (b) (c)

Figure 3. Pattern evolution for a & ac in FC-72 at f = 50 Hz. (a), subharmonic parametric instability
at ǫ = −0.17. The wavelengths are about 1.6 times that of synchronous meniscus waves in figure
2(a) as expected from the dispersion relation; (b), instantaneous pattern when random movements
of fluid cones occur at ǫ = 0.98. The crests are seen as white spots with troughs as white lines
surrounding the crests. The crests move about randomly over the surface. (c),Wave pattern at drop
ejection at ǫ = 3.14. The wave slopes steepen and the crests move faster.

liquids, the contribution of the gravitational term to the wavelength, which depends
on the forcing frequency and the surface tension, is small ( 2.7% for water to 25% for
FC-72 at f = 50Hz ). For Glycerin-water in the viscous regime, the wave length given

in Table 1 has been calculated from λν = 3π
√
ν/ωo given by Donnelly et al. (2004). This

value is practically identical to the wavelength calculated from the inviscid dispersion
relation (1.1) because the conditions for glycerin-water nearly coincide with the cross-
over from the capillary to the viscous threshold wavelength (Donnelly et al. 2004).

The evolution of wave patterns in FC-72 when a is increased beyond ac for frequencies
of 50 Hz, 100 Hz and 25 Hz, is shown in figures 3, 4 and 5 respectively. In figure 3(a) at
ǫ = (a−ac)/ac = −0.17, the parametric instability (at subharmonic frequencies) dominates
over the initial synchronous meniscus waves (shown in figure 2(a)) and develops parallel
lines of steeper slopes. Parametric instability is observed for a slightly less than ac

(ǫ = −0.17) because ac calculated from (1.3) is valid for idealised conditions. With
increasing ǫ, the stripe pattern of parametric instability breaks down to form laterally
moving fluid cones, an instantaneous pattern of which is shown in figure 3(b) at ǫ = 0.98.
The crests (seen as white spots) and troughs (seen as thin lines surrounding the crests)
move about laterally in a random way. At higher ǫ, the wave slopes steepen, the white
spots become points, the lines narrow, the random lateral movements become faster



8 B. A. Puthenveettil and E. J. Hopfinger

(a) (b) (c)

Figure 4. Pattern evolution for a & ac in FC-72 at f = 100 Hz. (a), parametric instability at ǫ = −0.31;
(b), instantaneous pattern from random movement of fluid cones at ǫ = 0.25; (c), wave pattern at
drop ejection at ǫ = 1.73.

(a) (b) (c)

Figure 5. Pattern evolution for a > ac in FC-72 at f = 25 Hz in the gravity-capillary regime.
(a), subharmonic waves at ǫ = 0.14. Parametric instability in the form of lines are not seen. (b),
azimuthal modulation on the circular waves at ǫ = 1.2; (c), Pattern at drop ejection at ǫ = 4.56.

and drops are ejected from the crests; the instantaneous pattern at this stage, when
ǫ = 3.14 is shown in figure 3(c). A similar route from meniscus waves, giving way to
stable parametric waves, that break down to random movements of fluid cones to drop
ejection is seen in figure 4 for FC-72 at 100 Hz. The wavelengths here are smaller as
expected at a larger forcing frequency. At f = 25 Hz parametric instability in the form of
lines is not seen. Instead, subharmonic circular waves are observed (figure 5(a)). Gravity
effects are important in FC-72 at this lower frequency(see Table 1), resulting in a larger
wavelength and decay length so that the side wall effects are stronger near the instability
threshold. The appearance of an azimuthal modulation to break down the circular wave
into circularly arranged peaks and troughs is seen clearly in figure 5. At drop ejection
when ǫ = 4.56 in figure 5(c), the wave pattern is again more random.

The pattern evolution in water at 100 Hz (figure 6) is similar to that in FC-72 at
50 Hz and 100 Hz; the wavelengths are larger than that in FC-72 at the same frequency
due to the larger kinematic surface tension of water. At f = 50Hz in water, pattern
evolution above ac is different, an azimuthal modulation of the circular wave pattern
(similar to that of figure 2(c)) occurs. This modulation gives rise to a periodic pattern
change. A typical cyclic change of pattern at ǫ = 1.01 is shown in figures 7(a) to 7(c).
The time period of the beat cycle is 38 s. With increasing ǫ, the three patterns in the
beat cycle break down to randomly moving cusps and troughs as in the earlier cases;
the resulting instantaneous pattern is shown in figure 7(d) at ǫ = 5. The dynamics
then remains similar to that observed earlier. The cusps and troughs sharpen and move
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(a) (b) (c) (d)

Figure 6. Pattern evolution in water at f = 100 Hz. (a), parametric instability at ǫ = 0.35. (b) and
(c), instantaneous patterns of the random waves at ǫ = 2.35 and ǫ = 4.24. (d), steepening of slopes
and drop ejection at ǫ = 5.53.

(a) (b) (c)

(d) (e)

Figure 7. Pattern evolution for a > ac in water at f = 50 Hz. (a)-(c), cyclic pattern change, with
a time period of 38 s (0.026Hz), at ǫ = 1.01. (d), instantaneous pattern of random lateral wave
movements at ǫ = 5; (e), drop ejection at ǫ = 9.5. In (e), the wave slopes steepen; the crests move
faster.

faster; the instantaneous pattern at drop ejection when ǫ = 9.5 is shown in figure 7(e).
The structures are much larger than those observed for FC-72 at the same frequency
(compare figures 3(b) and 7(d)) due to the larger surface tension of water.

The periodic pattern evolution shown in figures 7a to 7c is similar to the regimes
observed by Ciliberto & Gollub (1985). These authors found that when the driving fre-
quency and driving amplitude are such that these lie in an overlap region of two modes
(in their case modes (4,3) and (7,2) in water at a driving frequency f = 16.1Hz and
driving amplitude of about 2.5 times the threshold value of the sub-harmonic resonance
modes), a periodic mode oscillation occurs. In a small region chaotic oscillations were
also observed. At larger driving amplitudes the surface motion became chaotic at all
driving frequencies investigated. Similar observations of axisymmetric waves modu-
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lated by parametric instability giving rise to lattice modes which again break down to
random waves were also observed by Vukasinovic et al. (2007a) in drop atomisation.
We have not determined experimentally the phase diagram as was done for instance by
Ciliberto & Gollub (1985) and by Das & Hopfinger (2008b), because our aim has been
to determine the pattern evolution at a fixed driving frequency for driving amplitudes
leading to wave breaking and drop ejection at fixed driving frequencies. Nevertheless,
it is of interest to determine the sub-harmonic resonance modes that are closest to the
present driving frequencies in order to see whether the possibility that two modes over-
lap exists. From the dispersion relation, equation (1.1) we get for water at the driving
frequency f = 50Hz a dimensionless wave number kR = 15.81(where R = 2.5cm is
the container radius). The resonance modes are determined from the boundary condi-
tion, corresponding to J′

l
(klmR) = 0, where the first index corresponds to the number of

angular maxima.
The closest modes would be mode (4,4), corresponding to a driving frequency f =

50.59 Hz and mode (14,1) corresponding to f = 50.6Hz. However, these modes do
not agree with observations (figure 7 ) and the number of radial wave crests would be
incompatible with the container size. The other modes are mode (6,3) with, k63R = 15.268,
corresponding to a driving frequency f = 47.87Hz and mode (9,2) with k92R = 15.286,
corresponding to a driving frequency f = 47.94Hz. In principle, the frequency width
∆ f over which instability occurs is too narrow (it is about 4% at a forcing amplitude
of about twice the critical value, see Ciliberto & Gollub (1985) and Edwards & Fauve
(1995)) for these modes to include f = 50Hz. It is known, and has been demonstrated
by Das & Hopfinger (2008b), that for water the frequency of a given wave mode is
slightly higher than the theoretical value because the contact line is pinned and does not
satisfy the theoretical boundary condition (the effective container radius appears slightly
smaller than the actual radius). This would shift the frequency of modes (6,3) and (9,2)
sufficiently to the experimental driving frequency such that, at a driving amplitude of
about twice the threshold value, the experimental driving frequency and amplitude lie
within the bounds of the two modes. In figure 7(a), five to six angular spikes (angular
maxima) can be identified near the center part and in figure 7(c) there are at least nine
spikes. Considering all the imperfections, this would suggest a mode oscillation similar
to Ciliberto & Gollub (1985), except that in our case the frequencies of the two modes
are very close and the driving frequency is situated slightly above and not in between
the frequencies of the two modes. In figure 7(b) nearer to the container wall, it might
be possible to identify ten angular maxima and five in figure 7a. From this it could be
concluded that the pattern in figure 7(a) is a sub-harmonic of that in 7(b). If this were the
case, pattern 7(a) would not be an unstable primary mode, which is unlikely because
the wave amplitudes in 7(b) and 7(a) are similar. Therefore, the most likely explanation
is an oscillation between modes (6,3) and (9,2).

No mode oscillation has been observed for the other cases considered. For instance
the pattern at the surface of FC-72 forced at f = 25Hz (figure 5) is initially circular
(imposed by the container shape) and then, at a forcing amplitude of about twice the
experimental threshold value, an azimuthal pattern appears with seven angular maxima.
The dimensionless wave number at 25 Hz is kR = 13.4 that is close to mode (7,2)
of k72R = 12.93, corresponding to a forcing frequency of 24.44 Hz. Mode (8,2) would
correspond to a forcing frequency of 25.8 Hz. The driving frequency of 25 Hz is thus
within about 2% of the frequency of mode (7,2) so that the unstable surface pattern is able
to lock onto this mode when the driving amplitude is about twice the threshold value.
The stability bound of (7,2) is crossed before the intersection of this bound with that of
mode (8,2) so that no oscillation occurs. If an experimental driving frequency of 50.5
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Figure 8. Distribution of wavelengths of the crests at drop ejection in water at f = 50 Hz for
three sets of images. The inset shows the normal probability plot of the wavelengths for the third
set. The mean wavelength of 0.96 cm is close to the wavelength of 0.99 cm obtained from the
dispersion relation for subharmonic waves.

Hz would have been chosen, an oscillation between modes (7,2) and (8,2) could have
been possible but difficult to identify unambiguously because of the closeness of the two
modes. Note that with FC-72 the contact line is free to move so that the experimental
boundary condition corresponds to the theoretical one.

For FC-72 at 50 Hz and water and FC-72 at 100 Hz the dimensionless wave numbers
are very large and the wave patterns tend to become independent of the container shape.
Also, far away from the instability bounds and irrespective of the pattern evolution it is
found that the wave pattern consists of fluid cones moving laterally in a random fashion
independent of container shape.

We measured the distribution of the wavelengths of crests at the drop ejection thresh-
old for water from images similar to figure 7(e) at drop ejection where the crests and
the troughs could be distinguished. The measurements were done by mouse clicks over
the crests, using a program that captures the coordinates from mouse clicks. Data from
three images were used to improve the statistics and outliers were removed as per the
criterion of Frank & Althoen (2002). Note that the images were acquired at half the
forcing frequency, i.e. synchronous to the subharmonic parametric waves.

Figure 8 shows the probability density function of the wavelengths of crests at the
drop ejection threshold, in the standardised form, for water at f = 50 Hz. The standard
normal curve is shown as the solid line. The error bars represent the maximum possible
error, corresponding to the size (0.6 mm) of the bright spots in figure 7(e). Repeated
measurements from different image sets plotted in the figure show the possible vertical
and horizontal variation of the data. The inset in figure 8 shows the normal probability
plot of one of the data sets; linearity implies a normal distribution. The mean wavelength
is λm = 0.96 cm with a standard deviation of σλ ≈ λm/5. The mean wavelength is very
close to the wavelength of 0.99 cm predicted by the dispersion relation. For capillary
waves, the viscous instability analysis shows that the most unstable wavelength follows
the inviscid scaling (λ = C(σ/ρ)1/3ω2/3) obtained from the dispersion relation (Donnelly
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et al. 2004). This indicates that, since the wavelengths at drop ejection are distributed
normally around the subharmonic dispersion wavelength, the wavelength which be-
comes unstable first is predominant from the initiation of instability up to drop ejection.
However, these subharmonic waves are superimposed with a large number of random
waves with frequencies that are multiples of the subharmonic frequency. In other words,
as wave turbulence is approached, the spectrum broadens but with a peak at the sub-
harmonic frequency (Wright et al. 1996). This spectral peak is eliminated in randomly
forced wave turbulence (Falcon et al. 2007).

4. Drop ejection

4.1. Characteristic scales

Goodridge et al. (1997) found that drop ejection is essentially an inviscid process for
dimensionless driving frequencies ω∗ν < 10−5, corresponding to ω < 10 kHz for water
and ω < 1 kHz for FC-72. Hence, for low viscosity liquids, in the frequency range
1-1000 Hz, the usual capillary-viscous scales are not the most appropriate scales to use.

We therefore propose a gravity-capillary scaling which gives dimensionless parameter
values of order one in this low frequency range. These frequency and length scales are
respectively:

Ωg =

(

g3

σ/ρ

)1/4

and Lg =

(

σ/ρ

g

)1/2

. (4.1)

The resulting acceleration scale is LgΩ
2
g = g. The dimensionless circular forcing fre-

quency, forcing acceleration and forcing amplitude in the gravity-capillary regime are

ω∗ = ω/Ωg, (4.2)

a∗ = a/g, and (4.3)

A∗ = A/Lg (4.4)

respectively.
The dimensionless threshold acceleration is a∗

d
= ad/g. When the forcing frequency is

sufficiently large (ω∗ >> 0.61, see (4.21)), the drop ejection threshold should be indepen-
dent of gravity, the only possibility that satisfies this condition is the power law

a∗d = C1ω
∗4/3. (4.5)

This expression is identical to (1.5) when C1 ≈ 0.26. In the other limit when wave
breaking and drop ejection are dominated only by gravity, a∗

d
is a constant of the form

a∗d = C2. (4.6)

The two expressions suggest the general power law

a∗d = Cω∗n (4.7)

where n and C depend on the driving frequency with 0 6 n 6 4/3. The value of C2 has
not been determined. Wave breaking occurs when the dimensionless wave amplitude
bdω

2
o/g = 1 but the relation between ad and bd is not unique.

The cross-over from gravity to capillary waves occurs at a wave frequency given
by (1.2). The dimensionless forcing frequency corresponding to (1.2) is

ω∗t = 2 × ωot
/Ωg = 2

√
2, (4.8)

giving a convenient transition criterion from gravity to capillary waves. As will be
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f (Hz) ad expts.
cms−2

ad eq(1.5)
cm s−2

ω∗ν × 108 ω∗ a∗
νd
× 1010 a∗

d
(eq(4.5),

C1 = 0.26)
Water 25 807.85 917.62 2.15 2.61 0.14 0.82

50 1885.3 2312.3 4.3 5.22 0.45 2.68
100 5160.8 5826.5 8.61 10.45 0.88 5.26

FC-72 25 415.6 399.36 22.5 1.4 3.7 0.42
50 983.6 1006.3 44.9 2.8 8.74 1.0
100 2055.1 2535.8 89.83 5.6 18.26 2.09

Glyc.-water 50 12215 2045.6 3.8×107 4.77 4.27×109 12.45

Table 2. Droplet ejection threshold accelerations for the three fluids and the three driving frequen-
cies plotted in figure 9. The measured accelerations are in column 3 and those predicted by (1.5)
are in column 4. Column 5 to 8 contain the dimensionless frequencies and accelerations using
viscous-capillary scales(subscript ν) and gravity-capillary scales.

seen below (section 4.3.1), the cross-over from gravity to capillary dominated breaking
occurs at a different value of ω∗, the difference being due to larger capillary effects due
to a smaller radius of curvature of the wave crest.

4.2. Drop ejection threshold

Drop ejection is a continuous process. The ejection starts as very small size droplets,
ejected rarely, and increases with driving acceleration to larger drops ejected at a more
uniform rate. Because of this initial rare events of drop ejection, it is difficult to deter-
mine the drop ejection threshold acceleration accurately. Goodridge et al. (1997) defined
the threshold acceleration by a criterion of 2 drops in 10 s. Here, we manually counted
the number of drops ejected during a specific time period while increasing the driv-
ing acceleration by small increments. The measured drop ejection threshold shown in
figure 9 corresponds to a drop ejection rate of 1 to about 16 drops in 30 s. The vari-
ation in acceleration encountered in this range of drop ejection rate was lower than
the error involved in the measurement of the acceleration. Table 2 shows the values
of the measured drop ejection threshold acceleration ad at three frequencies, for water,
FC-72 and glycerin-water solution along with the values predicted by (1.5). There is rea-
sonable agreement between the predicted and the experimental values. The table also
shows the forcing frequency and the threshold acceleration, normalised by the viscous
scales (ω∗ν = ω/Ων and a∗

νd
= ad/LνΩ

2
ν) and the gravity-capillary scales (ω∗ = ω/Ωg and

a∗
d
= a/g). The gravity-capillary scales are more appropriate than the viscous scales as

the dimensionless driving frequencies and threshold accelerations are of order one.
In figure 9, the dimensionless drop ejection threshold a∗

d
is plotted verses ω∗ and

compared with a∗
d
= 0.26ω∗4/3 (4.5). Breaking occurs if the point (ω∗, a∗

d
) is above the

solid line. The error bars shown are the larger of the two errors viz. the error from
repeated measurements and the error in calibration between the voltage input and the
acceleration output of the shaker. The calibration error increases with acceleration as
the deviation of the shaker performance from the linear calibration fit increases with

increasing forcing amplitude. The vertical dotted line at ω∗ = 2
√

2 in figure 9 indicates
the cross-over from gravity to capillary waves according to (4.8) and the vertical dashed
line indicates the cross-over from gravity to capillary dominated breaking (4.21). All
our data, except the high viscosity glycerin-water data, agree with the inviscid scaling
of (4.5). The variation in the pre-factor C1 in (4.5) that captures the data spread of
the present experiments is approximately 0.26±0.05. This variation is shown by the
two parallel dotted lines in figure 9. The exponent n in (4.7) has not been adjusted to



14 B. A. Puthenveettil and E. J. Hopfinger

w
*

w

Figure 9. Variation of the drop ejection threshold acceleration with the forcing frequency, both
non-dimensionalised by the gravity-capillary scales. +, FC-72 at f = 25 Hz; �, Water at 25 Hz; ∗ ,
FC-72 at 50 Hz; ◦, Water at 50 Hz; ×, FC-72 at 100 Hz; ⋄, Water at 100 Hz and △, glycerin-water
solution at 50 Hz. The solid line is (1.5); breaking occurs above this line. Capillarity dominated
breaking occurs to the right of the dashed vertical line. The cross-over from gravity to capillary
waves is indicated by the dotted vertical line. The doted lines parallel to the line of (1.5) show the
maximum variation in the prefactor C1 in (4.5).

experiments because a value of n = 4/3 is imposed by virtue of the assumption of
capillary dominated breaking (see Section 4.1). However, we expect the value of n to
change from n = 0 when ω∗ ≪ 0.6 (see Section 4.3) to n = 4/3 when ω∗ ≫ 0.6, i.e. n is
expected to be a function of the driving frequency in the frequency range of transition
from gravity to capillary dominated breaking. It may be noted that the dimensionless
driving acceleration threshold value for the axisymmetric gravity wave is about 0.1 (Das
& Hopfinger 2008b) which is in agreement with figure 9.

4.3. Relation between wave and container acceleration

For capillary waves, Goodridge et al. (1997) quote the wave amplitude at the drop ejection
threshold as

bd = 0.73λ. (4.9)

Equating (1.5) to forcing acceleration Adω
2 and using λ from the dispersion relation,

along with (4.9), the relation between the wave amplitude and the forcing amplitude
Ad at drop ejection threshold, is

bd ≈ 28 Ad . (4.10)

The threshold capillary wave acceleration, calculated from (4.10) using ω = 2ωo is 7
times the forcing acceleration:

bdω
2
o ≈ 7Adω

2. (4.11)

The relation between the wave and the forcing acceleration given by (4.11) can be
obtained from a simple force balance model described below.



Journal of Fluid Mechanics 15

4.3.1. A physical model

The model is based on the hypothesis that the capillary wave breaks (drop pinch-
off at the wave crest) when the downward acceleration of the wave crest exceeds the
downward acceleration due to the surface tension force. The surface tension force at the
wave crest of radius r is

Fσ =
2σ

r
Sc, (4.12)

where Sc = πr2 is the projected surface area. We assume that the mass to be accelerated
to prevent breaking (drop detachment) is,

m = K1
4

3
πr3ρ (4.13)

with K1 ≈ 0.5 for a hemispherical cap. As the drop radius is generally larger than the
wave crest radius just before breaking, we take

r ≈ d

2K2
(4.14)

with K2 > 1, where d is the most probable drop diameter. K2 is the ratio of the drop
diameter to the wave crest diameter just before breaking. The present experiments
suggest a value of K2 ≈ 1.4. In the numerical simulations of James et al. (2003a) (their
figure 6), the ratio of the diameter of the drop that detaches ( at their t=1.45) to the wave
crest diameter just before necking starts (at t=0.4)is 1.25 < K2 < 1.4 depending upon
where the wave crest radius is measured.

The drop diameter is expected to be proportional to the most likely wave length at
breaking. From ultrasonic atomisation experiments, Lang (1962) determined the relation
d ≈ 0.34λwhere d is the Sauter mean diameter and λ the wave length determined from
the instability analysis. More recently, Donnelly et al. (2004) measured

d ≈ 0.35λ (4.15)

but using for d the most likely drop diameter of the log-normal drop size distribution;
the difference between the peak value and the Sauter mean diameter is 10 to 20%.

Using (4.12)to (4.15) and the capillary dispersion relation for λ, in the expression for
the downward acceleration ao = bdω

2
o = Fσ/m, we get the threshold wave acceleration

as,

bdω
2
o ≈ 4.86

(

σ/ρ
)1/3 ω4/3

o (4.16)

≈ 1.93
(

σ/ρ
)1/3
ω4/3 (4.17)

The wave acceleration is, therefore, 7.4 times larger than ad (1.93/0.26 from (4.17) and (1.5)),
comparing favourably with (4.11).

The transition between gravity and capillary breaking can be determined from (4.16).
At the drop ejection threshold, the relevant acceleration is the downward wave acceler-
ation ao = bdω

2
o ; gravity dominated breaking occurs when this downward acceleration

exceeds g(Taylor 1953). Hence for gravity dominated wave breaking, the threshold wave
amplitude is

bd = g/ω2
o (4.18)

= λ/(2π) = 0.16λ (4.19)

where we have used ω2
o = gk from the dispersion relation. For capillary wave breaking
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the threshold wave amplitude from (4.16) is

bd = ao/ω
2
o = 4.86

(

σ/ρ
)1/3
ω−2/3

o . (4.20)

Equating (4.18) and (4.20) we get the criterion for capillarity dominated wave breaking
as

ω∗ > 0.61. (4.21)

This value is indicated by the vertical dashed line in figure 9. For FC-72, breaking is
capillary dominated above f = 10.9 Hz while for water, capillary dominated breaking
occurs above f = 5.8 Hz. The breaking threshold of gravity waves depends on the wave
mode. Das & Hopfinger (2008b) showed that for the axisymmetric mode, capillary effects
remain important down to at least ω∗ ≈ 0.3.

Ifωo on the right hand side of (4.16) is expressed in terms of λ, given by the dispersion
relation, we get

bdω
2
o ≈ 19.4π2 (σ/ρ

)

λ−2 (4.22)

Using the wave acceleration calculated from (4.16) for water at f = 50 Hz, we obtain
from (4.22) that λ = 0.9 cm, a value close to the most probable wavelength from the
Gaussian distribution in figure 8. Also, if we substitute for ωo from the capillary dis-
persion relation on the left hand side of (4.22), we get bd ≈ 0.77λ that is close to (4.9).
According to (4.22), we expect the larger wavelength waves to be below the threshold
wave acceleration, while the smaller wavelength waves to generate spouts. It would
also follow that waves with smaller wavelengths have larger amplitudes and vice versa.
We now check these conjectures by observations of wave amplitudes at breaking.

Figures 10 shows the images of the wave heights near the drop ejection threshold
for water and FC-72 obtained synchronous to the wave frequency. The undisturbed
liquid level in all the images is five millimetres below the mark (of 4 cm) in the scale
shown at the right hand side of the images. Figure 10(a) shows the wave heights at
ǫd = (a − ad)/ad = 0.2 for water at a forcing frequency of f = 50 Hz, where ad is given
by (1.5). There is a distribution of wave heights, the peak being at 6 mm. Note that
the shorter wavelengths have larger amplitudes, as predicted by (4.22). Figure 10(b)
shows the wave heights at the point of drop formation for water, at f = 50 Hz, for a
slightly higher forcing acceleration, ǫd = 0.5. The wave height at the point of breaking
and drop formation is about 6 mm. Figure 10(c) shows the wave heights at ǫd = 1.2 for
FC-72 at f = 50 Hz. Breaking occurs at a wave height of 3 mm. These measured heights
correspond to bd/Ad = 26 for water and 29.4 for FC-72, matching with the prediction of
(4.10). Different breaking scenarios and the chaotic nature of capillary wave breaking has
been pointed out by Yule & Al-Suleimani (2000) in experiments on vibration induced
atomisation of a thin liquid layer.

4.4. Distribution of drop diameters.

Drop diameters have been measured previously in ultrasonic atomisation where viscous
effects are of importance (Lang 1962; Donnelly et al. 2004) and in droplet atomisation at
around 1kHz(Vukasinovic et al. 2004). No results seem to be available in the frequency
range of order 102 Hz.We determined the drop size distribution by image processing.
The drop diameters were calculated from side view images, taken with the center line of
the camera aligned with the top of the container, similar to figure 10(c). The images were
cut to the region above the container and then background corrected to obtain bright
drop images over a uniform dark background. A Canny edge detection routine, with an
appropriate threshold level to discard diffuse edges due to unfocused drops, was used
to obtain the white drop edges over a black background. Unconnected drop edges were
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(a)

5 mm 

4 cm 

(b)

5 mm 
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(c)

Figure 10. Wave heights near drop ejection. The undisturbed liquid level is at 3.5 cm on the scale
shown at the right hand side of the images. (a), water, f = 50 Hz ǫd = (a − ad)/ad = 0.2; (b), water
f = 50 Hz, ǫd = 0.5; (c),FC-72, f = 50 Hz ǫd = 1.2.

connected by a bridging routine and then the holes in the image (due to drops) were
filled. Objects connected to the border were deleted to remove partial drops and the free
surface of the liquid from the image. Objects with eccentricity greater than about 0.7
were discarded. This removed overlapping drops, jets and lines in the image. Isolated
white pixels due to noise were then removed by a morphological opening of the image.
The white regions in the image were then labelled and the areas of each label calculated.
The drop diameters were calculated from the pixel areas of the drops using the scale
factor for the images (0.09 mm/pixel). The statistics of the drop diameters at f = 50 Hz
were calculated from 795 drops for water, and from 1446 drops for FC-72, measured
from about 400 images.

The present measurements of drop diameters are conducted at higher accelerations
than the drop ejection threshold given by (4.5). The model presented in Section 4.3.1
is valid only for the initiation of the drop ejection. At higher accelerations than the
drop ejection threshold, at which we measure the drop diameters, the drops are mainly
created by the breakup of ligaments. This can be observed in figure 12 which shows
the production of drops in FC-72 and water at accelerations much higher than the drop
ejection threshold. A similar ligament formation has been observed by Vukasinovic
et al. (2007b) in the case of drop atomisation; these ligaments are caused by local cavity
collapse. Hence, we compare our results with the ligament fragmentation theory of
Villermaux (2007) which predict a Gamma distribution for the drop diameters. A log-
normal fit also matched the present drop diameter distribution, as was the case with
Donnelly et al. (2004). However, we present the Gamma distribution as it is consistent
with the physical picture of drop formation by ligament breakup.

Figure 11 shows the probability distribution function of the normalised drop diameters
d̃ = d/dm for FC-72 and water at f = 50 Hz and ǫd ≈ 1. The error bars are calculated
by assuming ±2 pixels error in the edge detection. We consider the second peak in
figure 11(b) to be the relevant drop diameter representative of the most likely wave
length. The first peak of small drops is probably due to random events such as local
cavity collapse or collision of the laterally moving wave crests. The peak drop size is
dm = 1.35 mm for FC-72 and dm = 2.8 mm for water. The dashed lines in figure 11 are
the best fit standard Gamma distribution curves of order m,

P(d̃) =
mm

Γ(m)
d̃ m−1e−md̃, (4.23)
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Figure 11. Probability distribution function of normalised drop diameters at ǫd ≈ 1. (a),FC-72,
f = 50 Hz; (b), water, f=50 Hz. The dashed line is the Gamma fit. In comparison to water, drops
ejected from FC-72 has broader distribution of diameters with a smaller mean.

(a) (b) (c) (d)

Figure 12. Drop ejection by ligament breakup at f = 50 Hz when accelerations are higher than the
drop ejection threshold. (a), ligament formation in FC-72. at ǫd = 0.46(b), view after 1/30 s from
(a). The ligament in (a) breaks into multiple small drops with a range of diameters. (c), ligament
formation in water at ǫd = 0.45. The ligament is longer (compare (a) and (c)) and thicker than that
in (a). (d), view after 1/30 s from (c). The ligament in (c) breaks ejecting two drops of similar size.

where m = 14.6 for FC-72 and m = 17.9 for water. As per Villermaux (2007), m is the
number of blobs of fluid in the ligament whose size is within d and d+∆d at time t. Larger
m implies longer, smoother and uniform ligaments breaking to give rise to narrower drop
size distributions, while smaller m implies barely elongated wave crests which break
into few big drops and few small ones resulting in a broader drop size distribution. The
distribution of FC-72 has a smaller m and is broader than that of water. Since the surface
tension of FC-72 is much lower than that of water we expect the ligaments to be less
elongated than in water resulting in a broader drop size distribution.

These inferences match with the observations from the side view images of the liquid
surface shown in figure 12. Figures 12(a) and 12(b) show the subsequent frames of the
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ligament breakup process in FC-72 at ǫd = 0.46 and f = 50Hz. Similar subsequent frames
of the ligament break up in water at ǫd = 0.45 and same f are shown in figures 12(c)
and 12(d). Note that both the ǫd are calculated using ad given in table 2. The ligament
in FC-72 is smaller in diameter and length compared to that in water; it breaks up to
produce about 4 drops of a range of drop sizes. In the case of water, the ligament is
thicker and longer than in FC-72. The ligament breaks up to produce two drops of larger
size than in FC-72; these drops being of similar size. Such breakups result in a narrower
drop size distribution with a larger mean drop size.

Since drop diameters do not depend on viscosity up to forcing frequencies of the order
of kHz (Vukasinovic et al. 2004) and even MHz corresponding to ω∗ν ∼ 0.1 (Donnelly
et al. 2004), the drop diameter, made dimensionless by the gravity-capillary scales, can
only depend on the dimensionless frequency, i.e.

d∗ = C3(ω∗)n (4.24)

where, d∗ = dm/Lg. Since figure 9 shows that the breaking is capillary dominated, for
gravity to be not important, n = −2/3; the mean drop diameters should thus scale as

dm = C3(σ/ρ)1/3ω−2/3 (4.25)

Similar scaling is obtained with capillary-viscous scales (1.6) and (1.7), as well as by
assuming that the drop diameters are proportional to the wavelengths given by the
dispersion relation for capillary waves. The value of the pre-factors obtained from our
experiments are C3 = 3.12 for water and C3 = 3.44 for FC-72. The variation of the
prefactor is only 10% and the range includes the prefactor of 3.34 obtained by Donnelly
et al. (2004). As per (4.25), the ratio of the drop diameters for water and FC-72, at the
same driving frequency, should be equal to the ratio of (σ/ρ)1/3 for the two fluids. The
ratio of (σ/ρ)1/3 for the two fluids is 2.3 and the ratio of the measured drop diameters is
2.1. The ratio of mean drop diameter to the mean wavelength for water at f = 50 Hz is
0.3 as against 0.35 from (4.15).

4.5. Drop ejection rate

The drop ejection rate is difficult to determine accurately because the ejected drops may
be counted twice as the drops often fall back. The only measurements available are those
by Goodridge et al. (1999) who used an expanded laser beam above the liquid surface.
The number of drops crossing the beam were counted with a photo-diode. Since the
present experiments were not aimed specifically at measuring the flux of drops we did
not develop an elaborate technique for measuring the flux. There is in fact no fully
reliable technique of which we could think of. We therefore used the simplest method
available to measure the number of drops per unit time and projected surface area, that
is by counting the number of ejected drops, N, at accelerations above ad in side view
images. The images covered a region 7 cm in width and 3 cm in height above the wave
surface S with the total diameter of the tank within the depth of focus of the camera.

The images were acquired at 30 fps for a specific time period T(T = 10s for the lowest
forcing accelerations to 0.5s for the highest forcing accelerations). The measurements
were repeated a few times at each acceleration. This technique was sufficient as we
limited our measurements to a small number of ejected drops (up to a maximum of 6
drops per image). Double counting due to drops falling back was avoided by counting
only the drops that were travelling up. The drop ejection rateΦ per unit area is expressed
by Φ = N/(STωo). For clarity, it may be noted that 1 drop ejected per wave period
2π/ωo = 0.04s−1 corresponds to Φ = 0.008cm−2. Goodridge et al. (1999) proposed for Φ
the power law Φ = 0.039ǫ′2.8

d
, where ǫ′

d
= (a − a′

d
)/a′

d
, and a′

d
= 0.8ad with ad being the
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Figure 13. Variation of Φ, the rate of drop ejection per unit area, with control parameter ǫ′
d
. The

data points are mean over repeated measurements. �, water at f = 50 Hz; �, FC-72 at f = 50 Hz;
◦, 100× Glycerin-water (Goodridge et al. 1999) at f = 45 Hz and · · · , 0.039ǫ′2.8

d
.

threshold drop ejection acceleration given in table 2 and shown in Figure 9. At a′
d
, that is

about 20% lower than the ad given in Figure 9, intermittent but very rare drop ejection
takes place. Figure 13 shows the variation of Φ with ǫ′

d
. The closed symbols represent

water and FC-72 at f = 50 Hz while the open symbol represent 100× Glycerin-water
data from Goodridge et al. (1999) at f = 45 Hz. The expression 0.039ǫ′2.8

d
is shown as the

dotted line. Note that the experimental values of Goodridge et al. (1999) (given in their
figure 2) do not match (1.11), nor our data, unless multiplied by 100. Figure 13 indicates
that the drop ejection rate is reasonably well represented by a power law when plotted
against ǫ′

d
. If ǫd = (a− ad)/ad were to be used as the control parameter, no power law can

be fitted†. As has been pointed out by Goodridge et al. (1999) the large power in ǫ′
d

is
consistent with the extremely rare event of drop ejection at onset.

While the water and the FC-72 data follow a similar power law, their pre-factors are
different; in the case of water, more drops are ejected at the same value of ǫ′

d
. In an attempt

to make the data collapse, a simple model is developed and outlined in Appendix B. At
a >> a′

d
drops are formed from ligaments or jets ejected from the fluid surface. These

ligaments are a result of inertial collapse of cavities at some wave troughs. The diameter
of these ligaments is then determined by the capillary wave length but the ligament
spacing may be different. The number of drops per ligament is Nl ∼ Ll/dm, where Ll

is the ligament length and dm the mean drop diameter, proportional to the ligament
diameter. The ligament length is to first order determined by inertial and gravitational

† The data would be well fitted by an exponential law of the form
φ = Φλ2

g g/ad = 8 × 10−6 exp(8.73ǫd). If we use ǫ′
d
, then the exponential fit is

φ = Φλ2
g g/a′

d
= 1.75 × 10−6 exp(7ǫ′

d
). Since we have no model or physical explanation for

such an exponential behaviour, we did not present the data in this way. One of the referees
pointed out that drop ejection is likely to be an activated process that would suggest an
exponential dependency of φ on ǫd. The power law model presented in Appendix B is an
inertial-gravity model which suggests a power law dependency of the ligament length on the
forcing acceleration. However, the increase of the number of ligaments with ǫd might not follow
a power law.



Journal of Fluid Mechanics 21

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

ε
d
’

Φ
(g

/a
d’)

Figure 14. Variation of Φ scaled with ad/g with ǫ′
d
. The symbols denote the same as in figure 13.

· · ·, 0.036ǫ′ 2.8
d

; —, 0.01ǫ′ 3
d

force balance. This leads to (see Appendix B):

Nl ∼ Ll/dm ∼ ǫ′2d
(

a′d/g
)

. (4.26)

The drop ejection rate is thenΦ = Nlnl, where nl is the number of ligaments per unit area
and dimensionless time Tωo. The functional dependence of nl on ǫ′

d
may be assumed

to be a power law and has, according to Figure 13, a nearly linear dependence on ǫ′
d

at
least in the range of ǫ′

d
investigated. In Figure 14,Φg/a′

d
is plotted as a function of ǫ′

d
and

it is seen that (4.26) makes the data collapse quite well. The best fit for the rate of drop
ejection per cm2 is

Φg/a′d = 0.01ǫ′3d (4.27)

In order to make Φ dimensionless a length scale is needed. One such length scale is
the capillary wavelength and the other the gravity wavelength λg = 2πg/ω2

o . Since the
ligament development depends on gravity, the more appropriate length scale seems
to be λg which is the same for water and FC-72. The ligament spacing is however a
multiple of λg because at the largest drop ejection rate considered, there are only one to
two ligaments present at each period. If we define φ = Φ(g/a′

d
)λ2

g then the best fit of the
data is

φ = 0.0006 ǫ′3d . (4.28)

5. Conclusions and further discussion

The principal contribution of the present work is the gravity-capillary scaling that is
more appropriate for low viscosity fluids and forcing frequencies f = ω/2π < 1 kHz.
This scaling gives dimensionless acceleration (a∗, (4.3)) and frequency (ω∗, (4.2)) values of
order 1 and, more importantly, it predicts the cross-over from capillary wave breaking
to gravity wave breaking (figure 9 and (4.21)). The threshold forcing acceleration for
wave breaking is in the gravity wave limit ω∗ ≪ 0.6, independent of forcing frequency.
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In the capillary dominated range the threshold forcing acceleration ad has a power law
ω∗4/3 (4.5). In this limit ω∗ > 0.6, the present results, obtained with two liquids whose
kinematic surface tensions with air differ by a factor of 10, are well fitted by a prefactor
C2 ≈ 0.26 in (4.5) which is in agreement with the results of Goodridge et al. (1996). For
a viscous liquid, the viscous scales Ων (1.6) and aν (1.8) must be used even at relatively
low forcing frequencies. This is clearly seen in figure 9 where the breaking acceleration
threshold for glycerin-water solution (ν = 1.44cm2s−1) does not collapse on the inviscid
law. The value of the dimensionless viscous forcing frequency ω∗ν (1.9) is of order 1 (0.38
at forcing frequency 50 Hz) for glycerin-water solution whereas it is of order 10−9 for
the low viscosity liquids (see Table 2). The cross-over from viscous to inviscid breaking
conditions is, according to Goodridge et al. (1997) at ω∗ν ≈ 10−5. A condition for viscous
effects to remain insignificant with respect to capillary effects is that the viscous length

scale (ν/ωo)1/2 is much smaller than the capillary length scale
√

σ/(ρao), where ao is the
wave acceleration at breaking, ao = 0.73λω2

o. The ratio of viscous to capillary length scale

is the capillary number, here equal to Ca = νω1/3
o /(σ/ρ)2/3. This number is of order 10−2

to 10−3 for the low viscosity liquids and about 1 for the Glycerin-water solution. For
the low viscosity liquids, inertia dominates over viscous forces, the Reynolds number
Re = ωoλ

2/ν being 103 to 104 . The Bond number Bo = ρω2
oλ

3/σ ≈ 102. However, the wave
crest radius is much smaller thanλ at breaking, giving a Bond number based on the wave
crest radius of about 1. This force balance at the wave crest is expressed in the break-up
model developed in Section 4.3.1. It gives the relation between the container acceleration
and the wave crest acceleration (4.17) and, consequently, the relation between the wave
amplitude and the forcing amplitude. These results are of practical importance because
these give information about the fluid velocity for given vibration conditions, including
horizontal vibrations.

The measured drop size distributions can be fitted by a Gamma distribution with
the most likely drop diameter dm depending on the threshold wave length (figure 8).
The ratio of dm/λ = 0.33 ± 0.03 which is close to the value measured by Donnelly et al.
(2004) in the ultrasonic frequency range where the breakup process is dominated by
viscosity. The distributions in the present experiments show a second peak of drop
diameter about half the main peak. One explanation for this peak of lower diameters
is the formation of jets due to collapse of cavities that have a smaller diameter than
the retracting wave crest that forms the cavity. In ultrasonic atomisation, viscosity may
prevent this jet formation. As mentioned before, the drop size distribution is also well
fitted by a log-normal distribution

For low viscosity fluids in small containers, the wave pattern near the instability onset
is imposed by the container shape. With increasing forcing amplitude at a given forcing
frequency, the observed pattern evolution is from circular waves that are azimuthally
modulated to waves in the form of randomly moving fluid cones (when viewed from
the top) at drop ejection (figure 3). The randomness of the wave motion at drop ejection
has been pointed out by Yule & Al-Suleimani (2000). The wave pattern evolution shown
in Section 3 demonstrates that the waves become random well before drop ejection, even
at values of ǫ = (a − ac)/ac ≈ 0.25 (see figure 4(b)), the specific value of ǫ depends on
the fluid properties and the forcing frequency. These random waves are independent
of container geometry and the wavelengths between their crests can be approximated
by a Gaussian distribution. The most likely drop diameter scales with the threshold
wavelength because the most probable wavelength of these random waves at drop
ejection is practically the same as the threshold value.

The number of ejected drops above the drop ejection threshold was determined from
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side view images. Goodridge et al. (1999) measured the drop ejection rate in a viscous
liquid (silicone oil) and suggested a correlation of the drop ejection rate per unit projected
surface area Φ in terms of ǫ′

d
= (a − a′

d
)/a′

d
, where a′

d
= 0.8 ad is the threshold for rare,

intermittent drop ejection. We find that drop ejection rate follows a cubic power law of
ǫ′

d
. The dimensionless drop ejection rate, φ as a function of ǫ′

d
for the two liquids of very

different surface tensions collapse reasonably well on a single curve when scaled by a′
d
/g

as predicted by a model developed in Appendix B.
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Appendix A. Laterally forced capillary waves

The general breaking criterion given by (4.16) should also hold for synchronous
capillary waves i.e. ωo = ω. In order to verify this, we performed experiments with the
same container vibrated in the horizontal direction. The vibration exciter was mounted
with its spindle horizontal and the Plexiglas container was screwed to the spindle
through the side. The container was made perfectly horizontal by using an electronic
level gauge.

We assume that the relation between the wave acceleration and the container accel-
eration, bdω

2
o ≈ 7Adω

2, still holds for synchronous waves. As the physical model of
drop ejection in Section 4.3.1 is valid for the case of horizontal forcing too, the wave
acceleration is given by (4.16). Using (4.10) and ωo = ω, we get:

bdω
2
o ≈ 28Adω

2 ≈ 28ad (A 1)

where bdω
2
o is given by (4.16). The threshold forcing acceleration for drop ejection in

horizontal forcing is then

ad = C4
(

σ/ρ
)1/3
ω4/3 (A 2)

with C4 ≈ 4.86/28 = 0.17. Note that this value is less than the value of 0.26 obtained for
parametrically forced capillary waves. This inference matches our experimental obser-
vations of drop ejecting condition for the horizontally forced case. From the threshold
accelerations calculated from the horizontal forcing experiments, C4 = 0.169 for water
and C4 = 0.166 for FC-72.

Appendix B. Number of drops from a ligament

Neglecting the distribution of drop diameters as a first approximation, the number of
drops from a ligament of length Ll is,

Nl ∼ Ll/dm (B 1)

where dm is the mean drop diameter. Assuming that the ligament length is determined
by the balance of gravity and inertia, we get

Ll ≈ V2
o/(2g), (B 2)

where Vo is the fluid velocity at the base of the ligament. Here we have neglected the
role of surface tension on the ligament development. This assumption is justifiable if the
Bond number, Bo = ρgLldm/σ >> 1. Bo ≈ 8 for water while Bo ≈ 25 for FC-72. Expecting
inertial collapse of free surface troughs to create the ligaments, we take

Vo ∼ (b − bd)ωo, (B 3)
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where b is the wave amplitude and bd the threshold drop ejection wave amplitude. The
wave amplitude b ∼ a/ω2

o and since dmω
2
o ∼ ad we get from (B 1) to (B 3)

Nl ∼
(a − ad)2

2adg
∼ ǫ2

d

ad

g
. (B 4)

It is of course possible to replace ad by a′
d

in (B 4).
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